Sifat mekanik didefinisikan sebagai ukuran kemampuan bahan untuk membawa atau menahan gaya atau tegangan. Pada saat menahan beban, atom-atom atau struktur molekul berada dalam kesetimbangan. Gaya ikatan pada struktur menahan setiap usaha untuk mengganggu kesetimbangan ini, misalnya gaya luar atau beban.
- 1 Bahan liat (ductile) dan bahan rapuh (brittle)
Bahan-bahan logam biasanya diklasifikasikan sebagai bahan liat (ductile) atau bahan rapuh (brittle). Bahan liat mempunyai gaya regangan ( tensile strain ) relatif besar sampai dengan titik kerusakan (misal baja atau aluminium) sedangkan bahan rapuh mempunyai gaya regangan yang relatif kecil sampai dengan titik yang sama. Besi cor dan beton merupakan contoh bahan rapuh.
- 2. Modulus kekerasan (modulus of toughness)
Kerja yang dilakukan suatu unit volume bahan, seperti misalnya gaya tarikan yang dinaikkan dari nol sampai suatu nilai yang menyebabkan keruntuhan didefinisikan sebagai modulus kekerasan. Ini dapat dihitung sebagai luasan dibawah kurva tegangan-regangan dari origin sampai titik keruntuhan. Kekerasan bahan adalah kemampuan untuk menyerap energi pada selang plastis dari bahan
- 3. Batas luluh bahan
Sebenarnya sifat elastis masih terjadi sedikit di atas batas proporsional, namun hubungan antara tegangan dan regangan tidak linear dan pada umumnya batas daerah elastis dan daerah plastis
sulit untuk ditentukan. Karena itu, maka didefinisikan kekuatan luluh (yield point). Kekuatan luluh adalah harga tegangan terendah dimana material mulai mengalami deformasi plastis. Pada gambar tegangan-regangan, memperlihatkan titik luluh atas dan titik luluh bawah yang ditandai oleh pengurangan beban mendadak, diikuti dengan perpanjangan yang meningkat dan peningkatan beban yang mendadak lagi. Gejala ini disebut meluluhnya bahan, yang ditandai dengan perubahan bentuk yang plastis dan naik turunnya beban.
- 4. Klasifikasi Bahan
Sampai saat ini, diskusi kita adalah didasarkan pada asumsi bahwa bahan mempunyai dua karakteristik, yaitu:
· Homogen, yaitu mempunyai sifat elastis yang sama pada keseluruhan titik pada bahan.
· Isotropis, yaitu mempunyai sifat elastis yang sama pada semua arah pada setiap titik dalam bahan.
Dalam uji tarik plat plat yang digunakan adalah plat dengan potongan searah serat / filamen.
- 5. Deformasi
Deformasi terjadi bila bahan mengalami gaya. Selama deformasi, bahan menyerap energi sebagai akibat adanya gaya yang bekerja sepanjang deformasi. Sekecil apapun gaya yang bekerja, maka benda akan mengalami perubahan bentuk dan ukuran.
Perubahan ukuran secara fisik ini disebut deformasi. Deformasi ada dua macam yaitu deformasi elastis dan deformasi plastis. Yang dimaksud deformasi elastis adalah deformasi yang terjadi akibat adanya beban yang jika beban ditiadakan, maka material akan kembali keukuran semula. Sedangkan deformasi plastis adalah deformasi yang bersifat permanen jika bebannya dilepas.
Penambahan beban pada bahan yang telah mengalami kekuatan tertinggi tidak dapat dilakukan, karena pada kondisi ini bahan telah mengalami deformasi total. Jika beban tetap diberikanmaka regangan akan bertambah dimana material seakan menguat yang disebut dengan penguatan regangan (strain hardening) yang selanjutnya benda akan mengalami putus pada kekuatan patah.
Sebuah plat yang diberi beban secara terus-menerus, secara bertahap akan mengalami deformasi. Pada awal pembebanan akan terjadi deformsi elastis sampai pada kondisi tertentu bahan akan
mengalami deformasi plastis. Pada awal pembebanan bahan di bawah kekuatan luluh bahan akan kembali kebentuk semula, hal ini dikarenakan sifat elastis bahan. Peningkatan beban melebihi
kekuatan luluh (yield point) yang dimiliki plat akan mengakibatkan aliran deformasi plastis sehingga plat tidak akan kembali ke bentuk semula.
Kekuatan luluh adalah harga tegangan terendah dimana material mulai mengalami deformasi plastis. Titik σy atas adalah titik luluh atas dan titik σy bawah adalah titik luluh bawah yang ditandai oleh pengurangan beban yang mendadak, diikuti dengan perpanjangan yang meningkat dan peningkatan beban yang mendadak lagi. Gejala ini disebut meluluhnya bahan, yang ditandai
dengan perubahan bentuk yang plastik dan naik-turunnya beban
Pada titik mulur hubungan tegangan-regangan sudah tidak linier, namun sifat elastis masih terjadi sedikit diatas batas proporsional. Pada umumnya batas daerah elastis dan daerah plastis sulit untuk ditentukan. Karena itu, maka didefinisikan kekuatan luluh (yield strength). Batas proporsional merupakan tegangan tertinggi dimana material masih mengalami deformasi elastis dan belum mengalami deformasi plastis.
Titik mulur atau yang biasa disebut dengan titik luluh (yield point) adalah titik transisi dari elastis ke daerah plastis. Pada titik mulur ini material mulai mengalami deformasi plastis yang bersifat permanen jika beban mulai dilepas.
Elastisitas dan Plastisitas Plat
Dalam pemilihan material seperti lembaran plat untuk pembuatan komponen yang harus diperhatikan adalah sifat-sifat material antar lain; kekuatan (strength), keliatan (ductility), kekerasan dan kekuatan lelah. Sifat mekanik material untuk membawa atau menahan gaya atau tegangan. Pada saat menahan beban, struktur molekul berada dalam keseimbangan. Gaya luar pada proses penarikan akan mengakibatkan material mengalami tegangan.
a. Elastisitas
Sebuah benda terdiri dari partikel – partikel kecil atau molekul – molekul. Diantara molekul – molekul ini bekerjalah gaya – gaya yang biasa disebut gaya molekuler. Gaya – gaya molekuler ini memberi perlawanan terhadap gaya – gaya luar yang berusaha mengubah bentuk benda itu sampai terjadi suatu keseimbangan antara gaya – gaya luar dan gaya – gaya dalam. Selanjutnya benda itu dikatakan berada dalam keadaan regang ( state of strain ).
Elastisitas adalah sifat yang dimiliki oleh suatu material yang menyebabkan benda / material akan kembali ke bentuk seperti semula setelah diberi beban dan mengalami perubahan bentuk
kemudian beban dihilangkan. Sebuah benda yang kembali sepenuhnya kepada bentuk semula kita namakan elastis sempurna, sedangkan apabila tidak sepenuhnya kembali kepada bentuk semula kita namakan elastis parsial (sebagian). ( S. Timoshenko dan Goodier. 1986 ).
Elastisitas bahan sangat ditentukan oleh modulus elastisitas, modulus elastisitas suatu bahan didapat dari hasil bagi antara tegangan dan regangan
b. Plastisitas
Plastisitas adalah sifat yang dimiliki oleh suatu material, yaitu ketika beban yang diberikan kepada suatu benda / material hingga mengalami perubahan bentuk kemudian dihilangkan lalu benda tidak bisa kembali sepenuhnya ke bentuk semula.
Peningkatan pembebanan yang melebihi kekuatan luluh (yield strength) yang dimiliki plat mengakibatkan aliran deformasi permanen yang disebut plastisitas. Menurut Mondelson (1983) teori plastis terbagi menjadi dua kategori:
- 1. Teori fisik
Teori fisik menjelaskan aliran bagaimana logam akan menjadi plastis. Meninjau terhadap kandungan mikroskopik material seperti halnya pengerasan kristal atom dan dislokasi butir kandungan material saat mengalami tahap plastisitas.
- 2. Teori matematik
Teori matematik berdasarkan pada fenomena logis alami dari material dan kemudian dideterminasikan ke dalam rumus yang digunakan untuk acuan perhitungan pengujian material tanpa mengabaikan sifat dasar material.
a. Tegangan ( Stress )
Tegangan adalah tahanan material terhadap gaya atau beban. Tegangan diukur dalam bentuk gaya per luas.
Tegangan normal adalah tegangan yang tegak lurus terhadap permukaan dimana tegangan tersebut diterapkan. Tegangan normal berupa tarikan atau tekanan. Satuan SI untuk tegangan normal adalah Newton per meter kuadrat (N/m2) atau Pascal (Pa). Tegangan dihasilkan dari gaya seperti : tarikan, tekanan atau geseran yang menarik, mendorong, melintir, memotong atau mengubah bentuk potongan bahan dengan berbagai cara. Perubahan bentuk yang terjadi sering
sangat kecil dan hanya testing machine adalah contoh peralatan yang dapat digunakan untuk mendeteksi perubahan bentuk yang kecil dari bahan yang dikenai beban. Cara lain untuk mendefinisikan tegangan adalah dengan menyatakan bahwa tegangan adalah jumlah gaya dibagi luas permukaan dimana gaya tersebut bereaksi.
Tegangan normal dianggap positif jika menimbulkan suatu tarikan (tensile) dan dianggap negatif jika menimbulkan penekanan (compression).
Tegangan normal (σ) adalah tegangan yang bekerja tegak lurus terhadap bidang luas (Timoshenko dan Goodier,1986) :
Tegangan adalah besaran pengukuran intensitas gaya atau reaksi dalam yang timbul persatuan luas. Tegangan menurut Marciniak dkk. (2002) dibedakan menjadi dua yaitu, Engineering stress dan true stress. Engineering stress dapat dirumuskan sebagai berikut :
A0 = Luas permukaan awal (mm2) Sedangkan True stress adalah tegangan hasil pengukuran intensitas gaya reaksi yang dibagi dengan luas permukaan sebenarnya (actual). True stress dapat dihitung.
b. Regangan ( Strain )
Regangan didefinisikan sebagai perubahan ukuran atau bentuk material dari panjang awal sebagai hasil dari gaya yang menarik atau yang menekan pada material. Apabila suatu spesimen struktur material diikat pada jepitan mesin penguji dan beban serta pertambahan panjang spesifikasi diamati serempak, maka dapat digambarkan pengamatan pada grafik dimana ordinat menyatakan beban dan absis menyatakan pertambahan panjang.
Batasan sifat elastis perbandingan regangan dan tegangan akan linier akan berakhir sampai pada titik mulur.
Hubungan tegangan dan regangan tidak lagi linier pada saat material mencapai pada batasan fase sifat plastis. Menurut Marciniak dkk. (2002) regangan dibedakan menjadi dua, yaitu : engineering strain dan true strain.
Engineering strain adalah regangan yang dihitung menurut dimensi benda aslinya (panjang awal). Sehingga untuk mengetahui besarnya regangan yang terjadi adalah dengan membagi perpanjangan dengan panjang semula.
c. Kurva Tegangan Regangan
Menurut Marciniak dkk. (2002) ada beberapa hal yang harus diketahui dalam hal Tegangan Regangan pada mekanis bahan yaitu :
Kurva True stress and True strain
Proses pengepresan (stamping) atau sheet metal forming menggunakan sifat plastis (plasticity) dari material logam yang akan menyebabkan bahan pelat menjadi bentuk baru apabila diregang melebihi batas elastis (elasticity) sehingga deformasinya permanen.
Hal yang mendasar dari proses pengepresan adalah memanfaatkan sifat plastisitas dari material saat pelat diberi gaya. Dengan memanfaatkan tahap plastisitas tersebut maka proses pembentukan dapat dicapai, dimana bentuk pelat akan sesuai dengan bentuk cetakan yang diinginkan (Rao, 1987). Konsep initerdapat pada kurva tegangan-regangan sebenarnya (true strain-stress curve). Daerahplastis terdapat pada garis kurva diatas titik mulur batas tegangan dimana material tidak akan kembali ke bentuk semula apabila beban dilepas, dan akan mengalami deformasi tetap yang disebut permanent set
· Temperatur
Faktor temperatur sangat mempengaruhi bentuk kurva Tegangan - Regangan. Secara umum
hubungan dari temperatur terhadap material biasanya semakin meningkatnya temperatur material akan meningkatkan keuletan (ductility) dan ketangguhan (toughness) material, menurunkan
modulus elastisitas, titik luluh, dan UTS-nya.
· Strain rate
Strain rate adalah laju deformasi benda ketika mendapat beban. Dalam proses manufaktur, benda
kerja akan meregang terdeformasi sesuai dengan kecepatan beban yang diterimanya.
Strain rate merupakan fungsi perubahan geometri benda / spesimennya. Efek dari strain rate pada flow stress adalah semakin tinggi strain rate, makin tinggi flow stress. Efek ini adalah kebalikan dari efek temperature pada flow stress.